ON THE "ZERO-TWO" LAW*

BY S. R. FOGUEL

ABSTRACT

Results of Ornstein-Sucheston, are extended to non-separable measure spaces and operators that are not induced by a transition probability.

Notation. We shall use the notation of [2]. Let (X, Σ, m, P) be a Markov process with m(X) = 1. Assume that P is ergodic and conservative:

If $0 \le f \in L_{\infty}$ and $f \ne 0$ then $\sum_{n=0} P^n f = \infty$. Note that all inequalities employed are a.e. inequalities.

1. The sequence of suprema

Let us define:

$$h_n = \sup\{(P^n g - P^{n+1} g): -1 \le g \le 1\}.$$

Note that the supremum is in the L_{∞} sense as defined in [1, IV.11.7].

THEOREM 1.1. The sequence h_n satisfies:

- (a) $0 \le h_n \le 2$
- (b) $h_n \ge h_{n+1}$
- (c) $Ph_n \geq h_{n+1}$
- (d) $\lim h_n = \text{Const.}$

PROOF.

(a)
$$0 = P^n 0 - P^{n+1} 0 \le \sup\{(P^n g - P^{n+1} g): -1 \le g < 1\} \le P^n 1 + P^{n+1} 1 \le 2.$$

(b)
$$P^{n+1}g - P^{n+2}g = P^n(Pg) - P^{n+1}(Pg) \le h_n$$
 since $-1 \le Pg \le 1$ if $-1 \le g \le 1$.

(c) For every $-1 \le g \le 1$

$$Ph_n \ge P(P^ng - P^{n+1}g) = P^{n+1}g - P^{n+2}g$$

and the supremum on the right hand side is h_{n+1} .

Received December 21, 1970

^{*} This research was supported in part by the National Bureau of Standards PL480 program grant NBS (g-130).

(d) Let $h = \lim h_n$, then $0 \le h \le 2$. Now $Ph = \lim Ph_n \ge \lim h_{n+1} = h$ and by [2, chap. II, th. B] h = Const.

Let us denote the above constant by α .

COROLLARY. $0 \le \alpha \le 2$ and $\alpha = 2$ if and only if $h_n(x) = 2$ for all x and n. As in [2, p. 54], we define $U_n = \inf\{P^n, P^{n+1}\}$ by

$$0 \le f \in L_{\infty} \colon U_n f = \inf\{P^{n+1} f' + P^n (f - f') \colon 0 \le f' \le f\}.$$

Theorem 1.2. $U_n 1 = 1 - \frac{1}{2}h_n$.

PROOF. $f = \frac{1}{2}(g+1)$ sends the family $-1 \le g \le 1$ onto $0 \le f \le 1$. Thus $P^n f - P^{n+1} f = \frac{1}{2}(P^n g - P^{n+1} g)$ or

$$U_n 1 = \inf \{ 1 - (P^n f - P^{n+1} f) : 0 \le f \le 1 \}$$

= $1 - \sup \{ P^n f - P^{n+1} f) : 0 \le f \le 1 \} = 1 - \frac{1}{2} h_n$.

COROLLARY. $\alpha < 2$ if and only if there exists a Markov operator $Q \neq 0$ and an integer n such that $Q \leq P^n$ and $Q \leq P^{n+1}$.

2. If $\alpha < 2$ then $\alpha = 0$. Throughout this section we will assume that $\alpha < 2$. For every integer k the operator P^k is conservative; see [3, cor. 2] On the other hand P^k need not be ergodic. Put $\Sigma_i(P^k) = \{A : P^k 1_A = 1_A\}$.

Lemma 2.1. The σ -field $\Sigma_i(P^k)$ is atomic. If $A \in \Sigma_i(P^k)$ is an atom then $P^i 1_A \ 0 \le i < k$ are characteristic functions of disjoint sets.

PROOF. If $\Sigma_i(P^k)$ is non-atomic, let A_n be a decreasing sequence of sets in $\Sigma_i(P^k)$ with $m(A_n) \to 0$. Now

$$0 = (I - P^{k})1_{A_{-}} = (I - P)(1_{A_{-}} + P1_{A_{-}} + \dots + P^{k-1}1_{A_{-}}).$$

Thus $1_{A_n} + P1_{A_n} + \cdots + P^{k-1}1_{A_n} = \text{Const.}$ as P is ergodic, or

$$1_{A_n} + P1_{A_n} + \dots + P^{k-1}1_{A_n} \ge 1.$$

But as $n \to \infty$ each term tends to zero. Let now A be an atom of $\Sigma_i(P^k)$ then $P^i 1_A$ are characteristic functions, by [2, chap. III, th. A], of the sets A_i and $A_i \cap A_j \in \Sigma_i(P^k)$ too. Hence, the intersection is empty.

A more general result is obtained in [4, th. 1].

COROLLARY. If $\alpha < 2$ then P^k is ergodic for every integer k.

PROOF. Let A be as above, then $h_{nk} \ge 2(P^{nk}1_A - P^{nk+1}1_A) = 2$ on A and $\alpha = 2$, too.

In the following construction we use the methods of [5].

Let us use the Corollary of Theorem 1.2 to write $P^k = Q + R$, $P^{k+1} = Q + S$, $Q \neq 0$, and Q, R, and S are Markov operators. Thus,

$$P^{k+1} = \frac{1}{2}Q(I+P) + \frac{1}{2}(RP+S) = \frac{1}{2}Q(I+P) + T$$

Also

$$T1 = \frac{1}{2}(RP1 + S1) = \frac{1}{2}(R1 + S1)$$
$$= \frac{1}{2}(P^{k}1 - Q1) + \frac{1}{2}(P^{k+1}1 - Q1) = 1 - Q1 \neq 1.$$

The sequence $T^n 1$ is monotone and its limit g satisfies Tg = g. Thus $P^{k+1}g \ge g$ and since P^{k+1} is ergodic and conservative $P^{k+1}g = g$ and g = Const.

Thus, $Qg = \frac{1}{2}Q(I+P)g = (P^{k+1}-T)g = 0$. Hence, g = 0 also. We have proved:

LEMMA 2.2. If $\alpha < 2$ then for some integer k $P^k = \frac{1}{2}Q(I+P) + T$ where Q and T are Markov operators and $T^n \downarrow 0$.

LEMMA 2.3. Let $\alpha < 2$. For every integer n there exists an integer m and a Markov operator Q_m with $P^m = \frac{1}{2}Q_m(I+P) + T^n$.

PROOF. The case n = 1 is proved in Lemma 2.2. Assume the Lemma for n.

$$P^{m}P^{k} = \frac{1}{2}Q_{m}P^{k}(I+P) + T^{n}P^{k}$$
$$= \frac{1}{2}Q_{m}P^{k}(I+P) + \frac{1}{2}T^{n}Q(I+P) + T^{n+1}.$$

Note that Q_m is a bounded positive operator on L_1 . Now

$$Q_m 1 = \frac{1}{2} Q_m (I + P) 1 \le P^m 1 \le 1.$$

Hence Q_m is necessarily a Markov operator.

Let $\varepsilon > 0$ be given and choose $n = n_1$ so large that $m\{x: T^n 1(x) < \varepsilon\} > \frac{1}{2}$. Call the corresponding integer $m = m_1$:

$$P^{m_1} = \frac{1}{2}Q_{m_1}(I+P) + T^n$$

$$P^{m_1+m_2} = \frac{1}{2}Q_{m_1}P^{m_2}(I+P) + T^nP^{m_2}$$

$$= \frac{1}{2}Q_{m_1}\left[\frac{1}{2}Q_{m_2}(I+P) + T^{n_2}\right](I+P) + T^nP^{m_2}$$

$$= \frac{1}{4}Q_{m_1}Q_{m_2}(I+P)^2 + \frac{1}{2}Q_{m_1}T^{n_2}(I+P) + T^{n_2}$$

Now put

$$\{x: \frac{1}{2}Q_{m_1}T^{n_2}(I+P)1(x) < \varepsilon/2\} = A_2$$

Choose n_2 (and thus m_2) so large that $m(A_2 \cap A_1) > \frac{1}{2}$.

In general after k steps we would have

$$P^{m_1+m_2+\cdots+m_k} = \frac{1}{2^k} Q_k^* (I+P)^k + T_k^*$$

where $T_k^*1(x) \le \varepsilon \sum_{i=0}^{k-1} 1/2^i$ on A_k and $m(A_1 \cap \cdots \cap A_k) > \frac{1}{2}$. Repeat the above argument

$$P^{m_1+\dots+m_k+m_{k+1}} = \frac{1}{2^k} Q_k^* P^{m_{k+1}} (I+P)^k + T_k^* P^{m_{k+1}}$$

$$= \frac{1}{2^{k+1}} Q_k^* Q_{k+1} (I+P)^{k+1} + \frac{1}{2^k} Q_k^* T^{n_{k+1}} (I+P)^k$$

$$+ T_k^* P^{m_{k+1}}$$

and $A_{k+1} = \{x : Q_k^* T^{n_{k+1}} 1(x) < 1/2^n \}$ can be chosen so large that $m(A_1 \cap \cdots \cap A_{k+1}) > \frac{1}{2}$.

Let us summarize:

LEMMA 2.4. Let $\alpha < 2$. Given $\varepsilon > 0$, there exists a sequence n_k , Markov operators Q^* and T^* with

$$P^{n_k} = Q_k^* \frac{1}{2^k} (I + P)^k + T_k^*; \ m \quad \bigcap_{k=1}^{\infty} \left\{ x \colon T_k^* 1(x) < \varepsilon \sum_{i=0}^{k-1} \frac{1}{2^i} \right\} > \frac{1}{2}.$$

PROOF. It is clear, from the construction that Q^* , T^* are bounded positive operators on L_1 . Thus, it is enough to show that they are bounded by 1:

$$T_k^* 1 \le P^{n_k} 1 = 1, \ Q_k^* 1 = Q_k^* \frac{1}{2^k} (I + P)^k 1 \le P^{n_k} 1 = 1.$$

THEOREM 2.5. If $\alpha < 2$, then $\alpha = 0$.

PROOF. Put $B = \bigcap_{k=1}^{\infty} \{x : T_k^* 1(x) < 2\varepsilon\}$, then $m(B) > \frac{1}{2}$. Let $-1 \le g \le 1$.

$$P^{n_k}(I-P)g = Q_k^* \frac{1}{2^k} (I+P)^k (I-P)g + T_k^*(I-P)g.$$

On B $T_k^*(I-P)g \le 4\varepsilon$. Now on the other hand

$$\left| Q_k^* \frac{1}{2^k} (I + P)^k (I - P)g \right| = \left| Q_k^* \frac{1}{2^k} \sum_{j=1}^k \left(\binom{k}{j} - \binom{k}{j-1} \right) P^k g \right|$$

$$\leq \frac{1}{2^k} \sum_{j=1}^k \left| \binom{k}{j} - \binom{k}{j-1} \right|$$

as in [5], 1.8 this tends to zero as $k \to \infty$.

REMARKS. By Theorems 1.2 we obtain:

If $\alpha < 2$ then $U_n 1 \uparrow 1$. Let $\alpha < 2$ and $0 \le u \in L_1$ then $\|u(I - P)P^n\|$ $= \langle u(I - P)P^n, g \rangle$ for some $-1 \le g \le 1$ so $\|u(I - P)P^n\| \le \langle u, h_n \rangle \to 0$. Hence, if $\alpha < 2$ $(\alpha = 0)$ and $u \in L_1$ then $\|u(I - P)P^n\| \to 0$. Since $L_1(I - P) = \{v : \int v dm = 0\}$ (as (I - P)f = 0 if and only if f is a constant) one obtains:

COROLLARY. Let $\alpha < 2$. If $v \in L$, and $\int v dm = 0$ then $||vP^n||_1 \to 0$.

AN EXAMPLE. Let $P = \delta P_1 + (1 - \delta)P_2$ $0 < \delta < 1$ and P is ergodic and conservative. (If $P_1 = I$, P is ergodic and conservative provided P_2 is). Now $P^n \ge \delta^n P_1^n$, $P^{n+1} \ge \delta^{n+1} P_1^{n+1}$ thus if $\alpha(P_1) = 0$, then $\inf(P_1^n, P^{n+1}) \ne 0$ for some n and therefore $\inf(P^n, P^{n+1}) \ne 0$ and $\alpha(P) = 0$ too, by the Corollary to Theorem 1.2.

3. The case d=2

Throughout this section, we shall assume that $\alpha=2$ or $\inf(P^n,P^{n+1})=0$ for every n. If P is induced by a transition probability then for every $-1 \le g \le 1$, $(P^ng-P^{n+1}g)(x) \le \|P^n(x,\cdot)-P^{n+1}(x,\cdot)\| \le 2$. Since the L_∞ supremum of the left hand side is 2 we obtain:

THEOREM 3.1. If $\alpha = 2$, then $||P^n(x, \cdot) - P^{n+1}(x, \cdot)|| = 2$ a.e.

Our assumption is that for every $n \sup \{(P^n - P^{n+1})g: -1 \le g \le 1\} = 2$. Now, according to [1, IV,11.7] a countable union will suffice. Thus there exists a sequence $-1 \le g_k \le 1$ and sets $B_{k,N}$ where $B_{1,N}, \dots, B_{N,N}$ are disjoint such that

$$\sum_{k=1}^{N} 1_{B_{k,N}} (P^n - P^{n+1}) g_k \to 2$$

or for every $\varepsilon > 0$

$$X = \bigcup_{k} \{x : (P^n - P^{n+1})g_k(x) > 2 - \varepsilon\}.$$

Let $g_k = g_k^+ - g_k^-$, $g_k^+ \le 1_{A_k}$, $g^- \le 1_{A'_k}$ $(A_k = \{x : g_k(x) > 0\})$ $(P^n - P^{n+1})g_k(x)$ $= P^n g_k^+(x) + P^{n+1} g_k^-(x) - P^n g_k^-(x) - P^{n+1} g_k^+(x)$ $\{x : (P^n - P^{n+1})g_k(x) \ge 2 - \epsilon\}$ $\subset \{x : P^n g_k^+(x) \ge 1 - \epsilon\} \cap \{x : P^{n+1} g_k^-(x) \ge 1 - \epsilon\}$ Or on this set:

$$(P^n - P^{n+1})(1_{A_k} - 1_{A'_k}) \ge 2 - 4\varepsilon$$

Thus sup $\{(P^n - P^{n+1}) (1_A - 1_{A'}): A \in \Sigma\} = 2$. (Again, we can take the supremum of a countable collection of sets.)

Clearly, the above implies, by replacing $\phi = 1_A - 1_{A'}$, by $(\phi + 1)/2 = 1_{A}$, that sup $\{(P^n - P^{n+1})1_A: A \in \Sigma\} = 1$.

Let us assume that P is induced by a transition probability. In [2, chap. V, (5.1)] it is proved that $P^n[A \times B] = \int_B P^n 1_A dm$ extends to a σ -additive measure on $\Sigma \times \Sigma$. Now $\sum_{k=1}^N 1_{B_{k,N}} (P^n - P^{n+1}) g_k \to 2$, integrate to get:

$$(\tilde{P}^n - \tilde{P}^{n+1})$$
 $\left(\sum_{k=1}^N g_k(x)1_{B_k,N}(y)\right) \rightarrow 2.$

Since $B_{k,N}$ are disjoint sets $\left|\sum_{k=1}^{N}g_{k}(x)1_{B_{k},N}\right| \leq 1$. Thus, $\|\tilde{P}^{n}-\tilde{P}^{n+1}\|=2$ (the norm of the measure). Thus

THEOREM 3.2. Let P be induced by a transition probability. The following conditions are equivalent:

- (a) $\alpha = 2$
- (b) $\tilde{P}^n \perp \tilde{P}^{n+1}$ for every n.

PROOF. If $\alpha = 2$, then $\|\tilde{P}^n - \tilde{P}^{n+1}\| = 2$ so the measures are singular. If $\alpha < 2$, then $\inf(P^n, P^{n+1}) = U_n \neq 0$ and $\tilde{U}_n \leq \tilde{P}^n$ $\tilde{U}_n \leq \tilde{P}^{n+1}$; so \tilde{P}^n and \tilde{P}^{n+1} are not singular.

If there exists a set A such that P^n1_A is a characteristic function for every n (for instance if P is induced by a point transformation) then $(P^n - P^{n+1})1_A$ can assume the values 1, 0, -1 only. If it assumes the value 1 then $\alpha = 2$. If it assumes the value -1 apply $P^n - P^{n+1}$ to $1_{A'}$ to get again $\alpha = 2$. Finally, if $P^n1_A = P^{n+1}1_{A'}$ and $P^n1_A = P^{n+1}1_{A'}$ so $P^n1_A = P^n1_A = 1$ and $P^n1_A = 1$ is a characteristic function for every $P^n1_A = 1$ where $P^n1_A = 1$ is a characteristic function for every $P^n1_A = 1$ where $P^n1_A = 1$ is a characteristic function for every $P^n1_A = 1$

REFERENCES

- 1. N. Dunford and J. T. Schwartz, *Linear operators*, *Part I*, Intersciences publishers, New York, 1958.
 - 2. S. R. Foguel, The ergodic theory of Markov processes, Van Nostrand, New York, 1969.
 - 3. S. R. Foguel, Remarks on conservative Markov processes, Israel J. Math. 6 (1968), 381-383.
 - 4. S. T. C. Moy, Period of an irreducible operator, Illinois J. Math. 11 (1967), 24-39.
- 5. D. Ornstein and L. Sucheston, An operator theorem on L_1 convergence to zero, Ann. Math. Statist. (1970).

THE HEBREW UNIVERSITY OF JERUSALEM